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The  rapid  development  of  perovskite  solar  cells  is  bey-

ond  our  imagination.  The  power  conversion  efficiency  (PCE)
of organic–inorganic hybrid perovskite solar cells has reached
25.5%  (https://www.nrel.gov/pv/cell-efficiency.html).  How-
ever,  the  unsatisfactory  stability  of  hybrid  perovskites  is  an
obstacle  for  their  commercialization,  which  results  from  the
volatile and hygroscopic organic cations[1].  Recently,  inorgan-
ic perovskites (CsPbIxBr3–x) are receiving more and more atten-
tion  due  to  their  good  thermal  stability[2].  Among  them,
CsPbI2Br  is  the  most  popular  material  for  solar  cells  due  to
the  appropriate  Goldschmidt  tolerance  factor[3, 4].  But  the
photovoltaic  performance  of  CsPbI2Br  is  much  lower  than
many  other  perovskites  due  to  its  large  bandgap  (1.92  eV),
which means it can only absorb the light below 650 nm, lead-
ing  to  low  photocurrent[5].  Narrow-bandgap  organic  solar
cells  have  much  broader  photoresponse  than  CsPbI2Br  solar
cells,  but  their  relatively  high energy loss  and insufficient  ab-
sorption  for  the  short-wavelength  light  limit  their  PCE.  Mak-
ing  tandem  solar  cells  is  an  effective  approach  to  break  the
efficiency limit.

Tandem  solar  cells  based  on  perovskite/silicon[6],  per-
ovskite/Cu(In,Ga)Se2 (CIGS)[7], perovskite/perovskite[8], and per-
ovskite/organic[9] structures  have  been  reported.  Compared
with perovskite/silicon and perovskite/CIGS tandem cells, per-
ovskite/perovskite  and  perovskite/organic  tandem  cells  have
the  advantage  of  low-temperature  solution-processing.  Per-
ovskite/perovskite tandem solar  cells  with tin-containing per-
ovskite  cell  as  the  rear  cell  offered  a  certified  PCE  of  24.2%,
which is the highest PCE for perovskite/perovskite tandem sol-
ar  cells  so  far[8].  But  it  is  hard  to  obtain  long-term  stable  tin-
containing perovskites because Sn2+ is  easy to be oxidized to
Sn4+.  Recently,  the  fast  development  of  organic  solar  cells
with  narrow-bandgap  non-fullerene  acceptors  provides  new
choice for tandem cells[10]. After we reported the first two-ter-
minal  inorganic  perovskite/organic  tandem  solar  cells[5],  the
PCE  of  inorganic  perovskite/organic  tandem  cells  increased
from 15.04% to 18.38%[11] via using better  perovskite and or-
ganic subcells. But the PCEs are still much lower than the oth-
er  perovskite-based  tandem  cells,  which  may  be  due  to  the
lack of  high-performance organic solar cells.  Recently,  we de-
veloped  a  new  polymer  donor  D18  for  organic  solar  cells,
demonstrating a  PCE of  18.56%,  which  is  the  highest  PCE for

organic  solar  cells  to  date[12, 13].  Introducing  high-perform-
ance  D18:Y6  cells  into  inorganic  perovskite/organic  tandem
cells may further improve the PCE.

In  this  communication,  we  report  an  inorganic  per-
ovskite/organic  tandem  solar  cell  with  a  CsPbI2Br  front  cell
and a D18:Y6 rear cell. The energy loss in the tandem cell was
reduced  by  using  SnO2/ZnO  electron-transport  layer.  We  op-
timized the photocurrent matching of the two subcells by ad-
justing  the  thickness  of  CsPbI2Br  layer  and  D18:Y6  layer.  The
tandem solar cells delivered a record PCE of 20.18%.

The  active  layer  for  the  organic  solar  cells  consists  of  a
wide-bandgap  polymer  D18  (Eg

opt =  1.98  eV)[12] and  a
narrow-bandgap  non-fullerene  small  molecule  Y6  (Eg

opt =
1.81  eV)[14] (Fig.  1(a)).  The  D18:Y6  blend  film  presents  an  ab-
sorption peak  at  810  nm and an absorption onset  at  931  nm
(Fig.  1(b)).  The  CsPbI2Br  film  shows  an  absorption  onset  at
650  nm  and  a  shoulder  peak  at  628  nm.  CsPbI2Br  can  com-
pensate  the  absorption  of  D18:Y6  below  628  nm,  leading  to
better light harvesting when applied in a tandem structure.

The  CsPbI2Br  cells  and  D18:Y6  cells  (Fig.  S1)  were  fab-
ricated  to  find  the  suitable  charge-transport  materials  and
preparation  conditions.  Unlike  the  frequently  used  SnO2,
SnO2/ZnO  was  used  as  electron-transport  layer.  The  CsPbI2Br
cells  with  SnO2/ZnO  electron-transport  layer  show  enhanced
open-circuit  voltage  (Voc)  and  short-circuit  current  density
(Jsc)  (Fig. S2),  suggesting reduced energy loss in the cells.  The
best  CsPbI2Br  cell  and  D18:Y6  cell  gave  PCEs  of  14.48%  and
15.23%, respectively (Fig.  S3 and Table S1).  The CsPbI2Br cells
show  external  quantum  efficiency  (EQE)  above  80%  at
390–640  nm  (Fig.  S3(b)).  The  high  EQE  before  640  nm  and
high Voc for  CsPbI2Br  cell  make it  suitable  to  be the front  cell
in  a  tandem  cell.  The  D18:Y6  cell  presents  broad  photore-
sponse up to 970 nm, leading to high integrated current dens-
ity  (23.43  mA  cm–2)  than  the  CsPbI2Br  cell  (14.56  mA  cm–2).
The  high  EQE  of  D18:Y6  cell  beyond  640  nm  makes  it  suit-
able to be the rear cell.

The  tandem  cells  were  fabricated  with  the  structure
shown  in  Fig.  S4(a).  The  SnO2/ZnO  layer,  CsPbI2Br  layer,
PTAA/MoO3/Au/ZnO  nanoparticles  (ZnO  NPs)  interconnect-
ing  layer  (ICL),  D18:Y6  layer,  and  MoO3/Ag  layer  can  be  seen
clearly  in  the  cross-section  scanning  electron  microscopy
(SEM) image of the tandem cell (Fig. 1(c)).  The thicknesses for
CsPbI2Br layer and D18:Y6 layer are 260 and 120 nm, respect-
ively. The thin Au layer (1 nm) between the two subcells is im-
portant for reducing the charge-transport barrier, thus improv-
ing device performance[5].  The charge-transport  layers form a

  
Correspondence to: C T Zuo, zuocht@nanoctr.cn; L M Ding,

ding@nanoctr.cn
Received 15 JANUARY 2021.

©2021 Chinese Institute of Electronics

SHORT COMMUNICATION

Journal of Semiconductors
(2021) 42, 020501

doi: 10.1088/1674-4926/42/2/020501

 

 
 

http://dx.doi.org/10.1088/1674-4926/42/2/020501	
https://www.nrel.gov/pv/cell-efficiency.html
https://www.nrel.gov/pv/cell-efficiency.html
mailto:zuocht@nanoctr.cn
mailto:ding@nanoctr.cn


good  energy  cascade  with  CsPbI2Br  layer  and  D18:Y6  layer
(Fig. S4(b)), benefitting charge transport.

The photocurrent from a tandem cell is limited by the sub-
cell  with  the  lower  photocurrent.  So,  the  photoresponse  of
the front cell  and the rear cell  should be well  adjusted to ob-
tain a balanced photocurrent while keeping the optimal over-
all  light  harvesting.  To  this  end,  the  thicknesses  for  CsPbI2Br
layer  and  D18:Y6  layer  were  optimized  (Figs.  S5  and  S6,
Table  S2  and  S3).  Finally,  a  best  PCE  of  20.18%  is  obtained
(Fig.  1(d)).  The J–V curves  show  slight  hysteresis  under  for-
ward and reverse scan (Fig. S7), which is caused by the hyster-
esis  of  the  inorganic  perovskite  cell.  A  steady-state  PCE  of
19.84%  is  obtained  by  measuring  at  the  maximum  power
point  (Fig.  S8).  The  EQE  spectra  for  the  subcells  were  meas-
ured  (Fig.  1(e)).  The  perovskite  subcell  and  the  organic  ksub-
cell present integrated current density of 12.56 and 12.42 mA
cm–2, respectively, with only 1% mismatch.

The  tandem  solar  cells  present  a Voc of  2.05  V,  which  is
close  to  the  sum  of  that  for  each  subcell  (2.08  V),  suggesting

good  ohmic  contact  between  the  subcells.  Compared  with
the  reported  organic/organic[15−25] and  inorganic  perovskite/
organic[5, 11, 26, 27] tandem  cells,  the  tandem  cells  here  show
much  higher Voc (Fig.  1(f)),  which  is  due  to  the  high Voc of
CsPbI2Br  cell.  The  PCE  is  also  much  higher  than  the  reported
results,  because  of  the  use  of  efficient  D18:Y6  subcell,  re-
duced  energy  loss,  and  balanced  photocurrent  of  the  sub-
cells. The PCE remains above 19% when the light intensity var-
ies  from  9.80  to  111.76  mW  cm–2 (Fig.  S9),  making  the  tan-
dem cells suitable for outdoor applications with instable light
intensity.  The  tandem  cells  maintain  96%  of  their  initial  PCEs
after  being  stored  in  a  N2 glovebox  for  30  days,  suggesting
good stability (Fig. S10).

In  summary,  inorganic  perovskite/organic  tandem  solar
cells  with  CsPbI2Br  perovskite  front  cell  and  D18:Y6  organic
rear  cell  were  made.  The Voc of  the  tandem  cells  was  en-
hanced by using SnO2/ZnO electron-transport layer. The photo-
current of  the tandem cells  was optimized by fine-tuning the
photocurrent of  the subcells.  The tandem solar  cells  deliver  a
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Fig. 1. (Color online) (a) Structures for D18 and Y6. (b) Absorption spectra for CsPbI2Br and D18:Y6 (1 : 1.6) films. (c) The cross-section SEM image
for the tandem cell. (d) J–V curve for the best tandem cell. (e) EQE spectra for the front subcell and rear subcell. (f) Summary of the Voc and PCE
for the tandem cell in this work and the reported organic/organic and inorganic/organic tandem cells.
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decent PCE of 20.18%. To the best of our knowledge, it  is the
highest  PCE  from  inorganic  perovskite/organic  tandem  solar
cells. Further enhancement in device performance can be real-
ized via optimizing  the  structure  details  of  the  tandem  cells
and applying high-performance innovative materials.
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